



# Coalbed Methane Resources of Mongolia

### Methods, Results, Recommendations

Ulaanbaatar, Mongolia



#### Tim A Moore, Managing Director, Cipher Consulting Pty Ltd

15 June 2022

Cipher Doc#: 22-419



# **Purpose of Course**

- Consider what overall goals are for any resource assessment
- Review the Scope and Goals of THIS resource assessment
- Review resource classifications and concept of analogue
- Review resource estimate techniques
- Hydrogeology
  - Concepts for CBM
  - ✤ Water production
  - \* Mongolian examples

#### Review of Methods and Results of THIS resource assessment

#### Next steps: Recommendations



#### Coalbed Methane Resources of Mongolia Workshop

|       |       | total time |                                                                                    |               |
|-------|-------|------------|------------------------------------------------------------------------------------|---------------|
| from  | То    | (hr:min)   | Торіс                                                                              | Presenter     |
| 9:00  | 9:15  | 0:15       | Opening Remarks                                                                    |               |
| 9:15  | 10:45 | 1:30       | BACKGROUND                                                                         | Tim A Moore   |
| 9:15  | 9:30  | 0:15       | Goals of Any Resource Assessment                                                   |               |
| 9:30  | 9:45  | 0:15       | Scope and Goals of This Resource Assessment                                        |               |
| 9:45  | 10:15 | 0:30       | Resource Classification (OGIP vs Prospective Resources) and Concept of an Analogue |               |
| 10:15 | 10:45 | 0:30       | Resource Estimation Techniques Review                                              |               |
| 10:45 | 11:00 | 0:15       | Coffee Break                                                                       |               |
| 11:00 | 13:00 | 2:00       | HYDROGEOLOGY                                                                       | Ryan D Morris |
| 11:00 | 11:30 | 0:30       | - Hydrogeology concepts for CBM                                                    |               |
| 11:30 | 12:00 | 0:30       | - Case Study: Australia                                                            |               |
| 12:00 | 12:30 | 0:30       | - What Happens With Water During Production                                        |               |
| 12:30 | 13:00 | 0:30       | - Mongolian Examples                                                               |               |
| 13:00 | 14:00 | 1:00       | LUNCH                                                                              |               |
| 14:00 | 17:00 | 3:00       | REVIEW OF METHODS AND RESULTS OF RESOURCE REPORT                                   | TAM           |
| 14:00 | 14:40 | 0:40       | - Delineation of Areas for Assessment and Selection Criteria                       |               |
| 14:40 | 15:10 | 0:30       | - Data Types and Limitations                                                       |               |
| 15:10 | 15:30 | 0:20       | - Evaluation & Input Parameters                                                    |               |
| 15:30 | 15:45 | 0:15       | Coffee Break                                                                       |               |
| 15:45 | 16:30 | 0:45       | - Results of Assessment                                                            |               |
| 16:30 | 16:50 | 0:20       | NEXT STEPS, RECOMMENDATIONS & DISCUSSION                                           | TAM, All      |
| 16:50 | 17:00 | 0:10       | Closing Remarks                                                                    |               |

NOTE: Times are in UB, Mongolian Times





• Thickness – net coal thickness of target - m

• Density - g/cm<sup>3</sup>

• Gas Content –  $m^3/t$ 



### Selecting Assessment Areas



**Criteria:** 

- Known coal occurrence
- Data delineating thickness
- A conservative approach for extent
- The approach was to assess only the most likely areas with relatively good confidence in data; it is hoped that further work on each individual area will allow them to be enlarged, and thus significantly increasing gas resources







#### South

**Go Ar**eas are large, from 150 to 3,283 km<sup>2</sup>

- A total of 10 well defined areas
- Multiple age reservoirs
- Rank ranges subbituminous to medium volatile bituminous



















#### What was not conducted in area selection



From: https://www.petromatadgroup.com/wp-content/uploads/2019/06/Corporate-Presentation-28\_06\_19-Petro-Matad.pdf









#### **Kharkhiraa**

- 6 Areas assessed
- Individual areas range in size from 7 to 396 km<sup>2</sup>
- Most areas are bituminous in rank, although some may be subbituminous.





#### Mongol-Altai

- 5 Areas assessed
- Range in size from 260 to 6,481 km<sup>2</sup>
- Areas range in rank from subbituminous to possibly low volatile bituminous





#### **Trans-Altai**

- 3 Areas assessed
- Range in size from 45 to 250 km<sup>2</sup>
- Areas range in rank from high to low volatile bituminous





#### South Khangai

- 3 Areas assessed
- Range in size from 38 to 256 km<sup>2</sup>
- Areas range in rank from subbituminous A to C





#### Ikh Bogd

- 3 Areas assessed
- Range in size from 26 to 72 km<sup>2</sup>
- Areas range in rank from high volatile bituminous B-A





#### Ongi River

- 2 Areas assessed
- Range in size from 30 to 2,518 km<sup>2</sup>
- Areas range in rank from subbituminous C-B



# <u>Orkhon - Selenge</u>

€ipher

- 8 Areas assessed
- Range in size from 25 to 742 km<sup>2</sup>
- Areas range in rank from subbituminous C to high volatile bituminous A

**CBM** Areas



#### Choir - Nyalga

- 11 Areas assessed
- Range in size from 224 to 990 km<sup>2</sup>

€ipher

• Areas range in rank from lignite to subbituminous A





#### Central Gobi

- 3 Areas assessed
- Range in size from 267 to 427 km<sup>2</sup>
- Areas are lignite in rank





#### <u>Sukhbaatar</u>

- 4 Areas assessed
- Range in size from 488 to 935 km<sup>2</sup>
- Areas range in rank from lignite to subbituminous A





#### East Gobi

- 5 Areas assessed
- Range in size from 89 to 1,142 km<sup>2</sup>
- Areas range in rank from lignite to medium vol bituminous





#### **Choibalsan**

- 6 Areas assessed
- Range in size from 60 to 321 km<sup>2</sup>
- Areas are lignite in rank





#### **Tamtsag**

- 10 Areas assessed
- Range in size from 29 to 14,363 km<sup>2</sup>
- Areas range in rank from lignite to subbituminous C



- 1. Confidential coal mine data
- 2. Confidential desorption data
- 3. Publically available company reports
- 4. Publically available published papers and reports
- 5. Publically available university theses



∎€ipher

### Data Types and Limitations

- 1. Mongolian coal-bearing regions are geographically quite extensive but the data tends to be restricted to the immediate area of existing mines.
- 2. Most of the coal seams in Mongolia do not outcrop and thus are not easily mapped, although the formations they occur within are often correlated in the subsurface for large distances.
- 3. The structural geology of Mongolia is highly complex and understudied. Coal-bearing formations assumed to occur over large distances may not. Seismic lines, gravity or magnetics were not examined in this study and thus formational continuity is uncertain.
- 4. The rank of the coal, which is fundamental in extrapolating gas content, is unknown in areas away from mines and thus inferred lateral and vertical changes have a high degree of uncertainty.
- 5. The veracity of the coal quality data can not always be evaluated and thus is taken at face value. No raw, laboratory data were sighted or examined in this study.
- 6. Only a few adsorption results have been reported and none of them have backing, corroborating information on their testing conditions.
- 7. No 'raw' laboratory data was sighted and examined for gas content (i.e. desorption analysis).
- 8. Some samples that were collected in the field, away from fresh mine faces, may be weathered and thusunreliable.







The best data for estimating CBM reservoir properties is gas **DESORPTION** & ADSORPTION





#### Analogues for Adsorption and Desorption must be used – EXAMPLES:



from: MNEC (2014)

29<sup>L</sup>



|                   | Parameter/Asse                               | s <u>sment</u> Area | 10                                                          | Comments                                                                                                                                                 |                                  |  |
|-------------------|----------------------------------------------|---------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|
|                   | Age                                          |                     | Middle<br>Jurassic                                          |                                                                                                                                                          | Background information           |  |
|                   | Formation                                    |                     | Orgilokhbulag                                               |                                                                                                                                                          |                                  |  |
| uation parameters | Depth (m)                                    |                     | 50-500                                                      | Based on assumed watertable depth and possible depest coal deposits                                                                                      | Important in estimating pressure |  |
|                   |                                              | Low                 | 118.5                                                       | 50% of high case                                                                                                                                         |                                  |  |
|                   | Surface Area (km²)                           | Base                | 213.2                                                       | 90% of high case                                                                                                                                         |                                  |  |
|                   |                                              | High                | 236.9                                                       | Area on the map                                                                                                                                          |                                  |  |
|                   |                                              | Low                 | 15.2                                                        | 40% of base case                                                                                                                                         |                                  |  |
|                   | Net Coal<br>Thickness (m)                    | Base                | 38.0                                                        | Area 10 is small; coal thickness is likely much thinner compered with other NS deposits.                                                                 | Input for probabilistic analysis |  |
|                   |                                              | High                | 41.8                                                        | 10% higher than base case                                                                                                                                |                                  |  |
|                   | Density (g/cm³)                              |                     | 1.43                                                        | Based on average ash of 13% for bituminous coal                                                                                                          |                                  |  |
|                   | Desorbed Gas                                 | Low                 | 0.5                                                         | Based on available tabulated data                                                                                                                        | Estimated from Evaluation        |  |
|                   | Volume (m <sup>3</sup> /ton) ar              | Base                | 5                                                           | Based on available tabulated data                                                                                                                        | narameters                       |  |
| ела               |                                              | High                | 12                                                          | Based on available tabulated data                                                                                                                        | parameters                       |  |
|                   | Play Type                                    |                     | Thermogenic                                                 | Based on rank of coal                                                                                                                                    |                                  |  |
| pr 🛛              | Vitrinite Reflectance (%)                    |                     | 0.74-0.78                                                   | Based on data listed in SGB04                                                                                                                            |                                  |  |
| ar                | Heating Value (kcal/kg, daf)                 |                     | 7663-8079                                                   | Based on data listed in SGB04                                                                                                                            |                                  |  |
| <u> </u>          | Volatile Matter (%, ad)                      |                     | 30.88-32.31                                                 | Based on data listed in SGB04                                                                                                                            |                                  |  |
| ndr 📕             | Ash Yield (%, db)                            |                     | 10.13-17.61                                                 | Based on data listed in SGB04                                                                                                                            | Evaluation narameters            |  |
|                   | Moisture (%, ad)                             |                     | 1.14-1.6                                                    | Based on data listed in SGB04                                                                                                                            |                                  |  |
| i                 | Estimated coal rank                          |                     | high vol B-A bit                                            | Based on vitrinite reflectance, heating value and volatile matter                                                                                        |                                  |  |
|                   | Estimated water table depth (m)              |                     | 50                                                          | Assumed                                                                                                                                                  |                                  |  |
|                   | Analogues for Gas Content<br>(if applicable) |                     | Parameters based<br>Sunrise and Sunse<br>Naryn Sukhait depo | on Jurassic age deposits in the Naryn Sukhait deposit;<br>t coal mine as well as the adsorption isotherm from for the<br>osit in the MNEC (2014) report. | <u> </u>                         |  |





- In trying to apply an ANALOGUE to estimate gas content, at least some properties of the reservoir (i.e. coal bed) need to be established.
- Gas holding capacity and gas content is largely (though not solely) related to rank (i.e. level of thermal maturation of the organic material), and rank can be used to infer gas properties.
- More than one parameter should be used when estimating – or even measuring! rank.
- The effect of coal type on 'rank' should not be underestimated.





- Not all analyses are best at estimating rank
- Vitrinite reflectance best overall (although can be suppressed)
- Volatile matter good, but affected by coal type
- Bed moisture good at low ranks, but hard to really measure accurately.

31

# RESULTS





Photo by M.C. Friederich (2010) Area 2, South Gobi Region; Permian-age Delin Shan Formation.



#### **Original Gas In-place (BCM)**

| Region         | P90    | P50    | P10    |
|----------------|--------|--------|--------|
| Choibalsan     | 15     | 20     | 27     |
| Tamtsag        | 364    | 790    | 1,696  |
| Sukhbaatar     | 96     | 140    | 197    |
| Choir-Nyalga   | 200    | 265    | 347    |
| East Gobi      | 75     | 105    | 142    |
| Central Gobi   | 48     | 70     | 98     |
| Orkhon-Selenge | 328    | 495    | 785    |
| Ongi River     | 154    | 324    | 560    |
| South Gobi     | 4,934  | 6,987  | 9,782  |
| lkhbogd        | 16     | 22     | 29     |
| South Khangai  | 11     | 16     | 22     |
| Kharkhiraa     | 135    | 189    | 256    |
| Mongol-Altai   | 3,920  | 7,041  | 12,055 |
| Trans-Altai    | 39     | 50     | 64     |
| All Areas      | 12,967 | 17,061 | 22,599 |



■Choibalsan Tamtsag Sukhbaatar Choir-Nyalga East Gobi Central Gobi □ Orkhon-Selenge Ongi River South Gobi Ikhbogd South Khangai Kharkhiraa □ Mongol-Altai Trans-Altai



#### **Prospective Resources (BCM)**

| Region         | P90   | P50   | P10   |
|----------------|-------|-------|-------|
| Choibalsan     | 5     | 7     | 9     |
| Tamtsag        | 170   | 364   | 762   |
| Sukhbaatar     | 58    | 86    | 124   |
| Choir-Nyalga   | 129   | 172   | 227   |
| East Gobi      | 45    | 64    | 89    |
| Central Gobi   | 28    | 44    | 62    |
| Orkhon-Selenge | 196   | 300   | 485   |
| Ongi River     | 90    | 196   | 354   |
| South Gobi     | 2,503 | 3,394 | 4,579 |
| lkhbogd        | 9     | 14    | 19    |
| South Khangai  | 6     | 10    | 14    |
| Kharkhiraa     | 74    | 104   | 144   |
| Mongol-Altai   | 1,537 | 2,436 | 3,885 |
| Trans-Altai    | 8     | 11    | 17    |
| All Areas      | 5,982 | 7,408 | 9,230 |



■Choibalsan Tamtsag Sukhbaatar Choir-Nyalga East Gobi Central Gobi □ Orkhon-Selenge Ongi River South Gobi Ikhbogd South Khangai Kharkhiraa □ Mongol-Altai Trans-Altai











16























































**€ipher** 

- 1. Make the CBM data (electronic and hard copy) that this report has relied upon freely available online, in much the way that some countries do, such as:
  - a. Australia: <u>https://geoscience.data.qld.gov.au</u>, <u>https://georesglobe.information.qld.gov.au/</u>, <u>http://www.bom.gov.au/water/groundwater/explorer/map.shtml</u>
  - b. New Zealand: <u>https://www.nzpam.govt.nz/maps-geoscience/</u>
  - c. USA: <u>https://wogcc.wyo.gov/data,</u> <u>https://wsgs.maps.arcgis.com/apps/webappviewer/index.html?id=09ebeedba94048a0b1ec</u> <u>4dcfc71eb9b5</u>
- 2. The GIS files of the areas of assessment used in this report should also be made freely assessable online. This will provide a starting point for any researcher or potential investor for expansion of resources.



### Recommendations (con't)

- Conduct sample collection campaigns for defining the basic, important properties of coal reservoirs, which are fundamental to the foundational knowledge of CBM reservoirs and plays such as:
  - a. Collection of fresh, well documented coal samples from all coal regions and all important areas and test for:
    - I. Maximum gas holding capacity ('adsorption isotherm' tests)
    - II. Proximate (% ash yield, % moisture, % volatile matter) and sulfur analyses
    - III. Vitrinite reflectance
    - IV. Maceral analysis
- 4. In areas of known CBM resources, make the 1:200,000 scale geological maps available online, either freely available or for a nominal fee.
- 5. Extend basin areas or delineate their boundaries more precisely using existing air-borne magnetics and gravity surveys as well as using existing seismic line interpretations or re-interpretations.





€ipher

### Recommendations (cont'd)

• €ipher

- 6. Collect, consolidate and centralise the key reservoir and hydrogeological data that is needed for CBM development and make this information and data available to potential investors and researchers, including:
  - a. Coal permeability measurements
  - b. Reservoir pressure measurements

### **Cited References**



- Guy, A., Schulmann, K., Munschy, M., Miehe, J.-M., Edel, J.-B., Lexa, O., Fairhead, D., 2014. Geophysical constraints for terrane boundaries in southern Mongolia. Journal of Geophysical Research: Solid Earth 119, 7966-7991
- Hanžl, P., Guy, A., Battushig, A., Lexa, O., Schulmann, K., Kunceová, E., Hrdličková, K., Janoušek, V., Buriánek, D., Krejči, Z., Jiang, Y., Otgonbaatar, D., 2020. Geology of the Gobi and Mongol Altai enhanced by gravity analysis: a key for understanding of the Mongolian Altaides. Journal of Maps 16, 98-107.
- Huangfu, Y., Kang, Y., Deng, Z., Chi, H., Wang, D., Jiang, S., Sun, T., Jiao, J., Liu, H., Gu, J., Wu, F., 2016.Study on the formation conditions of low coal rank coalbed methane in Jiuqiao depression, Hailar Basin.China Academic Journal Electronic Publishing House 189-201.
- Li, L., Yao, H., Li, W., Lyu, W., Siqin, B., 2019. Accumulation condition and reservoir formation model of coalbed methane in Yimin Sag, Hailaer Basin. Journal of Northeast Petroleum Uninversity 43, 78-87.
- Mongolian Nature and Environmental Consortium (MNEC), 2014. Coal mine methane (CMM) resource assessment and emissions inventory development in Mongolia, Ulaanbaatar, Mongolia, 84 pp.
- Ministry of Natural Resources of the People's Republic of China, 2020. Regulation of coalbed methane reserves estimation, DZ/T 0216-2020, 20 pp.
- Moore, T.A., 2012. Coalbed methane: A review. International Journal of Coal Geology 101, 36-81.
- Moore, T.A., Friederich, M.C., 2021. Defining uncertainty: Comparing resource/reserve classification systems for coal and coal seam gas. Energies 14, 6245, 35 pp., <u>https://doi.org/10.3390/en14196245</u>.
- Society of Petroleum Engineers, 2007. Petroleum resources management system. Society for Petroleum Engineers, 47 pp., Houston, Texas.
- Society of Petroleum Engineers, 2011. Guidelines for application of the Petroleum Resources Management System. Society of Petroleum Engineers, 221 pp.
- Society of Petroleum Engineers, 2018. Petroleum Resources Management System. Society of Petroleum Engineers, 57 pp.

Society of Petroleum Evaluation Engineers, 2020. Canadian Oil and Gas Evaluation Handbook (Consolidated

52 Third Edition), Calgary, 460 pp.

Australia Mongolia Extractives Program Phase 2 (AMEP 2) is supported by the Australian Government through the Department of Foreign Affairs and Trade (Australian Aid) and implemented by Adam Smith International.

#### Adam Smith International



Tim Moore is currently the Managing Director of Cipher Consulting Pty Ltd specializing in advising on coal and coalbed methane exploration. He is also Adjunct Associated Professor at the School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, Australia and a Distinguished Visiting Professor at the School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, China. Tim is also on the Editorial Boards for the International Journal of Coal Geology and the Indonesian Journal on Geoscience. He has over 260 published papers, reports and abstracts. Over the last 40 years, Tim has worked in production companies, academia and government positions in many parts of the world. (tmoore@ciphercoal.com)

If you want to know more go to the Cipher website & Blog: <u>https://www.ciphercoal.com</u>







# **Got Questions?**

Please visit our website for more information about activities or contact Oyunbileg Purev, Partnership Manager at oyunbileg@amep.mn.

@www.AMEP.mn @AusMonXtractive @AMEP2